Our Lady of Peace Catholic Primary and Nursery School

'With Christ in our hearts, together we grow'.

MATHEMATICS CALCULATION POLICY

Approved by the Governing Body of Our Lady of Peace Primary School and Nursery

Introduction

Children are introduced to the processes of calculation through interrelated practical, mental and written activities; a process that starts from their earliest mathematical experiences. As children begin to understand the underlying ideas they develop ways of recording to support their thinking; these methods will become more efficient and succinct over time, and children will make choices between there various strategies.

The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. Please note that early learning in number and calculation in Reception follows the Development Matters EYFS document, and this calculation policy is designed to build on progressively from the content and methods in the Early Years Foundation Stage.

Mental Skills

Written methods of calculations are based on mental strategies. Each of the four operations builds on mental skills which provide the foundation for jottings and informal written methods of recording. Skills need to be taught, practised and reviewed constantly. These skills lead on to more formal written methods of calculation.

Addition

- Recognise the size and position of numbers.
- Count on in ones, tens, hundreds, thousands, and decimals. Know number bonds to 10, 20, 100 and beyond.
- Add multiples of 10 to any number. Partition and recombine numbers (e.g. 57=50+7)
- Bridge through the tens barrier.

Subtraction

- Recognise the size and position of numbers
- Count back in ones, tens, hundreds, thousands and decimals. Know number facts for all numbers to 10, 20, 100 and beyond.
- Subtract multiples of 10 from any number.
- Partition and recombine numbers (only split the number to be subtracted) Bridge through the tens barrier.

Multiplication

- Recognise the size and position of numbers.
- Count on in different steps $10 s, 5 s, 2 s, 4 s, 8 s, 3 s, 6 s, 9 s$ and $7 s$ Double numbers up to 10 and beyond.
- Recognise multiplication as repeated addition. Quick recall of multiplication facts (times tables)
- Use known facts to derive associated facts (e.g. $2 \times 4=8$, so $20 \times 4=80$)
- Multiplying by 10, 100, 1000 and understanding the effect.

Division

- Recognise the size and position of numbers.
- Count back in different steps $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 100 \mathrm{~s}, 1000 \mathrm{~s}$, decimals. Halve numbers to 20 and beyond.
- Recognise division as repeated subtraction. Quick recall of division facts.
- Use known facts to derive associated facts.
- Divide by $10,100,1000$ and understanding the effect.

Our Lady of Peace Catholic Primary and Nursery School With Christ in our hearts, together we grow						
Progression in the use of manipulatives to support learning - USE IT!						
Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Real life objects						
0-9 digit cards	0-9 digit cards	$0-9$ digit cards	0-9 digit cards	$0-9$ digit cards	$0-9$ digit cards	0-9 digit cards
Number track to 10	Number line to 20	Number line to 100	Number line to 100	Number line including negative numbers	Number line including negative numbers	Number line including negative numbers
Numbered counting stick	Counting stick					
	Place value charts Tens \& ones	Place value charts Hundreds, tens \& ones	Place value charts Thousands, hundreds, tens \& ones	Place value charts - Ten Thousands, thousands, hundreds, tens \& ones	Place value charts to a million and three decimal places	Place value charts to 10 million and three decimal places
Interlocking cubes - Use one colour to represent one amount	Interlocking cubes - Use one colour to represent one amount	Dienes	Dienes	Dienes	Dienes	Dienes
			Place value counters	Place value counters	Place value counters	Place value counters
	Place value arrow cards - tens and ones	Place value arrow cards - tens and ones	Place value arrow cards - H, T, O	Place value arrow cards - Th, H, T, O	Place value arrow Cards	Place value arrow Cards

Our Lady of Peace Catholic Primary and Nursery School With Christ in our hearts, together we grow						
Progression in the use of manipulatives to support learning - USE IT!						
Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Part-part-whole mat	Part-part-whole mat	Part-part-whole mat	Part-part-whole model	Part-part-whole model	Part-part-whole model	Part-part-whole model
Bar model with real- life objects	Bar model with real life objects/pictorial objects/representative objects eg. Counters	Bar model with counters /Dienes progressing to numbers	Bar model with numbers			
Bead strings - ten	Bead strings - twenty	Bead strings hundred				
Numicon shapes						
			Cuisenaire rods	Cuisenaire rods	Cuisenaire rods	Cuisenaire rods
Double sided counters						
Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an Amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount

Our Lady of Peace Catholic Primary and Nursery School With Christ in our hearts, together we grow		
Maths Working Wall - DISPLAY IT!		
Introduce the problem	Introduce a real-life Maths problem to the children. How do we go about solving this?	A pizza, chips and ice cream cost £4.55 altogether. A pizza costs double the chips and the chips cost double the ice cream. How much does each item cost?
Show it	Use a real-life representation of the concept which children can see, touch and feel.	
Draw it	Show a pictorial representation of the concept	
Explain it	Explain how you answered the question. Using reasoning skills and justify the explanation	bar modelled the prices of all three items, and from this I ivided the fotal amount (E4.55) by because that's how each piece is worth 65 p, which made the ice cream 65 p, the chips $£ 1.30$ and the pizza $£ 2.60$.

Prove it	Show the jottings/working out. Convince the teacher!	ice cream $=f 4555 \div 7=65 p$ chips $=i$ ice cream $\times 2=f 1.30$ pi2za $=$ chip $5 \times 2=f 2.60$
Say it		Use vocabulary related to the concept

Progression in the teaching of counting in Foundation Stage

Pre-counting The key focus in pre-counting is an understanding of the concepts more, less and the same and an appreciation of how these are related. Children at this stage develop these concepts by comparison and no counting is involved.	Ordering Count by reciting the number names in order forwards and backwards from any starting point.	One to one correspondence One number word has to be matched to each and every object. Lack of coordination is a source of potential error - it helps if children move the objects as they count, use large rhythmic movements, or clap as they count.	Cardinality (Knowing the final number counted is the total number of objects) Count out a number of objects from a larger collection. Know the number they stop counting at will give the total number of objects.
Pre-counting ideas Provide children with opportunities to sort groups of objects explicitly using the language of more and less. Which group of apples has the most? Which group of apples has the least?	Ordering ideas Provide children with opportunities to count orally on a daily basis. Rote count so that children are able to understand number order and can hear the rhythm and pattern. Use a drum or clap to keep the beat.	One to one correspondence ideas Play counting games together moving along a track, play games involving amounts such as knocking down skittles. Use traditional counting songs throughout the day ensuring children have the visual/kinaesthetic resources eg. 5 little ducks, 10 green bottles.	Cardinal counting ideas How many bananas are in my fruit bowl? Allow children to physically handle the fruit. Provide children with objects to point to and move as they count and say the numbers.

Progression in the teaching of counting in Foundation Stage

Subitising (recognise small numbers without counting them)	Abstraction	Conservation of number MASTERY!	End of year counting expectations
Children need to recognise small amounts without counting them eg. dot patterns on dice, dots on tens frames, dominoes and playing cards as well as small groups of randomly arranged shapes stuck on cards.	You can count anything - visible objects, hidden objects, imaginary objects, sounds etc. Children find it harder to count things they cannot move (because the objects are fixed), touch (they are at a distance), see, that move around. Children also find it difficult to count a mix of different objects, or similar objects of very different sizes.	Ultimately children need to realise that when objects are rearranged the number of them stays the same.	count reliably to 20 count reliably up to 10 everyday objects estimate a number of objects then check by counting use ordinal numbers in context eg first, second, third count in twos, fives and tens order numbers 1-20 say 1 more/ 1 less than a given number to 20
Subitising ideas Provide children with opportunities to count by recognising amounts.	Abstraction Ideas How many pigs are there in this picture? Provide children with a variety of objects to count.	Conservation of Number - The amount is "seven" and doesn't change. $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$	

Progression in the teaching of place value

Progression in the teaching of place value

Progression in the teaching of place value

Tens Frame Ideas

LIFE SIZE TEN FRAME	Create a life-size ten frame in the classroom and outdoor play area. Use counters, pennies, teddies, gingerbread men, children etc.
FLASH	Flash ten frame briefly and have children write the number on a whiteboard. Using whiteboards, rather than having children say the number, ensures that all children attempt to respond and allows the teacher to assess class progress. When the response is oral, not all child responses are audible. Encourage children to share the different strategies used to find the total number of dots for cards, "How did you see it?" This can be varied by asking children to write the number and draw the pattern they saw, or by having them build the number flashed on their own blank frame.
FLASH: ONE MORE	Once children are familiar with the basic patterns, and know them automatically, flash a 10 frame or dot card and ask them to name the number that is one more than the number flashed. Variation: ask children to give the number that is two more/one less/double/ten more than the number flashed.
I WISH I HAD TEN	Flash a dot card or ten frame showing 9 or less and say, "I wish I had 10 ". Children respond with the part that is needed to make ten. The game can focus on a single whole, or the "wish I had" number can change each time.
Variation: teacher flashes card and children write the complement of ten on individual whiteboards with dry	
erase markers.	

	target number.
$\begin{aligned} & 1 \text { MORE } \\ & 1 \text { LESS } \\ & 10 \text { MORE } \\ & 10 \text { LESS } \end{aligned}$	The following four prompts are written on the board: - one more - one less - ten more - ten less The teacher flashes a dot or ten frame card as the 'starting number'. The first child selects one prompt. For example, if the teacher flashes a card showing ' 5 ' the first child might say, "one more than 5 is 6 ", the second child might say, "ten more than 6 is 16 ", and the third child might say, "one less than 16 is 15 ". Continue until all children have had a turn.
TEEN FRAME FLASH (11-20)	Teen Frame Flash (11-20) Once children are subitizing ten frame patterns $0-10$, cards showing larger numbers (i.e. more than one ten frame) should be introduced. Use mental math sessions with the following key questions: How many? How many more than 10 ? As children become familiar with the 'teen' patterns introduce further questions to develop number relationships. - What is one more/two more than the number I flashed? - What is one less/two less than the number I flashed? - How far away is the number I flashed from twenty? - Double the number I flash. What is the near Doubles fact? (i.e., if 15 is flashed, children answer 7+8)
MULTIPLES	Flash a tens frame and ask children to give you the product if the number you flash was multiplied by 2,5 etc.

Progression in the teaching of calculation

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Column method - no regrouping.	Column methodregrouping. (up to 3 digits)	Column methodregrouping. (up to 4 digits)	Column methodregrouping. (with more than 4 digits) (Decimals- with the same number of decimal places)	Column methodregrouping. (Decimals- with different amounts of decimal places)
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10	Counting back Find the difference Part whole model Make 10 column method - no regrouping	Column method with regrouping (up to 3 digits)	Column method with regrouping (up to 4 digits)	Column method with regrouping (with more than four digits) (Decimals with the same number of decimal places)	Column method with regrouping (Decimals - with different amounts of decimal places)
Multiplication	Doubling Counting in multiples Arrays (with support)	Doubling Counting in multiples Repeated addition Arrays Showing commutative multiplication	Counting in multiples Repeated addition Arrays - Showing commutative multiplication Grid method	Column multiplication (2 and 3 digits multiplied by 1 digit)	Column multiplication (up to 4-digit numbers multiplied by 1 or 2 digits)	Column multiplication (multi digit up to 4 digits by a 2-digit number)

Division	Sharing objects into groups Division as grouping	Division as grouping Division within arrays	Division within arrays Division with a remainder Short division (2 digits by 1 digit concreate and pictorial)	Division within arrays Division with a remainder Short division (3 digits by 1 digit concreate and pictorial)	Short division (Up to 4 digits by a 1-digit number. Interpret remainders appropriately for the context).	Short division Long division (Up to 4 digits by a 2-digit number. Interpret remainders as whole numbers, fractions, or round)

Progression in the teaching of calculations

ADD IT!			
Objectives and strategies	Concrete Show it!	Pictorial Draw it!	Abstract Explain it!
Combine two parts to make a whole model Part-part-whole model Teach the children that the cubes/counters represent the real-life objects.		Part + Part = Whole Whole - Part = Part	

Progression in the teaching of calculations

SUBTRACT IT!			
Objectives and strategies	Concrete Show it!	Pictorial Draw it!	Abstract Explain it!
Taking away ones	Use real-life physical objects, counters, cubes etc. to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $5-2=3$	$\begin{aligned} & 4=6-2 \\ & 18-3=15 \\ & 8-2=6 \end{aligned}$
Counting back Use counters and move them away from the group whilst counting backwards.	Make the larger number in the subtraction calculation. Move the beads along the bead string whilst counting backwards in ones. 13-4	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Column method with regrouping

Make the larger number with the Dienes or place value counters.

Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.

Now I can subtract my ones.

Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction.

Draw the counters onto a place value grid and show what has been taken away by crossing the counters out as well as clearly showing the exchanges made.

When confident, children can find their own way to record the exchange/regrouping.

Show children how the concrete method links to the written method alongside your working.

Cross out the numbers when exchanging and show where we write our new amount.

```
836-254=582
8*"0
200 50 4
500 80 2
```

Children can start their formal written method by partitioning the number into clear place value columns.

Moving forward the children use a more compact method.

This will lead to an understanding of subtracting any number including decimals.

$$
\begin{array}{rrrrr}
& \begin{array}{c}
5 \\
2
\end{array} & 12 & 1 \\
2 & 3 & . & 0 \\
& 2 & 6 & . & 5 \\
\hline 2 & 3 & 6 & . & 5
\end{array}
$$

Progression in the teaching of calculations

MULTIPLY IT!			
Objectives and strategies	Concrete Show it!	Picłorial Draw it!	Abstract Explain it!
Doubling	Use practical activities to show how to double a number. $4 \times 2=8$	Draw pictures to show how to double a number Double 4 is 8	Double 16 Partition a number and then double each part before recombining it back together.
Counting in multiples		Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Repeated addition	Use different objects to add equal groups.	$5+5+5=15$	Write addition sentences to describe objects and pictures.
Arrays - showing commutative multiplications	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Grid method

Show the link with arrays to first introduce the grid method.

4 rows of 10
4 rows of 3

Use Dienes to move towards a more compact method.
4 rows of 13 .

Use place value counters to show finding groups of a number eg. multiplying by 4 so we need 4 rows.

Add up each column, starting with the ones making any exchanges needed.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\times	30	5
7	210	35

$210+35=245$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

Column multiplication

Children can continue to be supported
by place value counters at the stage of
multiplication. multiplication.

Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.

It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.

Start with long multiplication, reminding the children about lining up their numbers clearly in columns.

If it helps, children can write out what they are solving next to their answer.

Progression in the teaching of calculations

DIVIDE IT!		
Objectives and strategies Concrete Show it!	Pictorial Draw it!	Abstract Explain it!
Sharing objects into groups I have 10 cubes; can you share them equally into 2 groups? If we are dividing by two we are finding one half.	Children use pictures or shapes to share quantities. $8 \div 2=4$	One half of 14 is 7 $1 / 2$ of $14=7$ $14 \div 2=7$ Share 9 cakes between three people $9 \div 3=3$
Division as Divide quantities into equal groups. Use grouping cubes, counters, objects or place value counters to aid understanding. $\stackrel{(1)}{(-)}$ (1)	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. \square $20 \div 5=$? $5 \times ?=20$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{ll} \mathrm{Eg} & \\ 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r .

Times Table Policy

TIMES IT!

Times Tables are at the heart of mental arithmetic, which in itself helps form the basis of a child's understanding and ability when working with number. Once the children have learnt their times tables by heart, they are then able to work far more confidently and efficiently through a wide range of more advanced calculations. At Our Lady of Peace, we believe that through a variety of interactive, visual, engaging and rote learning techniques, most children can achieve the full times table knowledge.

From June 2020 onwards, students in Year 4 will be required to take a 'multiplication tables check'.
The multiplication tables check is designed to help ensure children in primary school know their times tables up to 12 off by heart. As well as being critical for everyday life, knowledge of multiplication tables helps children to solve problems quickly and flexibly, and allows them to tackle more complex mathematics later on in school.

Just as the phonics screening check helps children who are learning to read, the multiplication tables check will help teachers identify those pupils who require extra support. This will ensure that all pupils leave primary school knowing their times tables by heart and able to start secondary school with a secure grasp of fundamental arithmetic as a foundation for mathematics.

Reception	Year 1	Year 2	Year 3	Year 4	Year 5\&6
I can count in steps of 1 I can count in steps of 2 I can count in steps of 10 I can count in steps of 5	I can count in steps of 5 I know my 1 times table I know my 2 times table I know my 10 times table	I know my 5 times table I know my 3 times table I know my 4 times table	I know my 6 times table I know my 7 times table I know my 11 times table	I know my 9 times table I know my 8 times table I know my 12 times table	Regular consolidation of all times tables.

Times Table Policy

DISPLAY IT!

Times tables should be on display at the front of all classrooms, for children to use as support and reference.

Year 1:

1, 2, 5 and 10 times tables should be displayed.

Year 2:

1, 2, 3, 4, 5 and 10 times tables should be displayed

$1 \times 1=1$	$2 \times 1=2$	$3 \times 1=3$	$4 \times 1=4$	$5 \times 1=5$
$1 \times 2=2$	$2 \times 2=4$	$3 \times 2=6$	$4 \times 2=8$	$5 \times 2=10$
$1 \times 3=3$	$2 \times 3=6$	$3 \times 3=9$	$4 \times 3=12$	$5 \times 3=15$
$1 \times 4=4$	$2 \times 4=8$	$3 \times 4=12$	$4 \times 4=16$	$5 \times 4=20$
$1 \times 5=5$	$2 \times 5=10$	$3 \times 5=15$	$4 \times 5=20$	$5 \times 5=25$
$1 \times 6=6$	$2 \times 6=12$	$3 \times 6=18$	$4 \times 6=24$	$5 \times 6=30$
$1 \times 7=7$	$2 \times 7=14$	$3 \times 7=21$	$4 \times 7=28$	$5 \times 7=35$
$1 \times 8=8$	$2 \times 8=16$	$3 \times 8=24$	$4 \times 8=32$	$5 \times 8=40$
$1 \times 9=9$	$2 \times 9=18$	$3 \times 9=27$	$4 \times 9=36$	$5 \times 9=45$
$1 \times 10=10$	$2 \times 10=20$	$3 \times 10=30$	$4 \times 10=40$	$5 \times 10=50$
$1 \times 11=11$	$2 \times 11=22$	$3 \times 11=33$	$4 \times 11=44$	$5 \times 11=55$
$1 \times 12=12$	$2 \times 12=24$	$3 \times 12=36$	$4 \times 12=48$	$5 \times 12=60$

KS2:

All times tables up to 12×12 should be available for children. The display must be large enough for all children to see and on table top resources where necessary.

Individual times tables should be displayed.

HOMEWORK

Children need to be sent home times table homework on a regular basis.
This can be in the form of times table 'challenges'.

Class Teachers can set weekly times table sessions via the TTRS Website.
Teachers also have the ability to create 'Battle of the Bands' competitions where classes can compete against each other. Teachers are able to keep track of the students' progress via the website tracking system.

In addition to using TTRS to support the students learning is to identify times table patterns and practice with parents outside of the classroom.

Children need to rehearse counting regularly in order that they MASTER the number system.
Remember to count forwards and backwards orally and in written form.
Count from any number.
Ensure pronunciation of numbers is correct.

COUNTING IDEAS

Counting ladder - draw a ladder. Put starter number in the middle. Count forwards up the ladder and backwards down the ladder.	Chanting	Spot my error	Pass the parcel (wrap up numbers, predict next number)
Count in a sequence	Pendulum counting - multilink cube on a string	Speed counting	Mixed sequences eg $+10,+1$, -2 or missing number sequences
How many beats? Teacher beats wood block. Children count how many times in their head. Record. Each beat could represent an amount.	Action counting	Estimate and count When counting estimated objects, place the objects in rows of 10 .	What am I counting in? Teacher counts, children work out rule. Can they then continue the pattern?
Counting stick (attached numbers then remove)	Count to the beat of the drum	Eyes closed counting game blindfold one child, point to others who stand and say their name. Blindfolded child counts.	Play counting tennis eg count in steps, teacher says 5, children say 10 (mime using racket)
Fizz buzz	Use shapes eg triangles and count number of sides using 3 times table	Count coins in a pot, drop in one by one	Count using constant function on calculator

Lead the counting into calculation so the children see the link, for example, if counting in twos, calculate using repeated addifion, multiplication include inverse operations etc.

DIFFERENT WAYS OF COUNTING

| Single steps | Multiples | Use a rule
 E.g. $10+1-3$ | Missing numbers |
| :--- | :--- | :--- | :--- | :--- |
| Fractions | Units of time | Millilitres/litres | Centimetres/metres |
| Grams/kilograms | Negative numbers /
 Temperature | Percentages | Ordinals |

VISUAL AIDS FOR COUNTING

Number line	100 square	Counting beads	Bead frame	
Number snake	Number tiles	Pocket number line	Real money, large money or magnetic money	Shapes eg count sides
Counting stick	Whiteboards making own visual prompt	Objects (real life)	Base 10 Hundreds, tens, units	
Real life packaging showing arrays eg egg boxes, biscuit packets	Wrapping paper, wall paper etc. to count number of shapes	Number track	Counting bead string	
Clocks	Measuring jugs	Thermometer	Bead frame/abacus	
Pictures	Fingers	Interactive whiteboard	Multilink/buttons etc.	

REHEARSE IT!

Rehearsing old skills:
Children need to rehearse skills already taught to lead them to MASTERY.
The objectives will depend on your year group; however, it is important to keep old skills alive.
Remember to present the old skills in a variety of ways eg. Venn diagrams, Carroll diagrams, pictograms, tables, <and > signs, missing information, etc.

REASON IT!

There is a huge emphasis on reasoning in Maths lessons.
Children need opportunities to justify and explain their knowledge. Ensure you are using:

- WRM Small steps - Reasoning and Problem-solving Questions
- Classroom Secrets - Reasoning and Problem-Solving Questions
- I See Reasoning Upper Key Stage 2
- I See Reasoning Lower Key Stage 2

Click here to open the Varied Questioning Document for EFYS - Year 6.

- I See Reasoning Key Stage 1
- NRICH tasks

RECALL IT!

Rapid recalling of key facts is important in developing fluency and MASTERY.
As children recall facts, deepen their knowledge by reasoning in context eg.
When recalling number, bonds totalling 100: 'tell me two lengths that together make one metre.'

Recall number bonds	Recall addition / subtraction facts	Recall multiplication / division facts	Recall fraction, decimal, percentage equivalents
Recall shape names and properties	Recall time related facts	Recall measurement facts	

Build mathematical vocabulary into every lesson.

Encourage children to speak in full sentences when giving responses.

Taboo - describe this word without saying it	Taboo - describe this word without saying it	Taboo - describe this word without saying it	
Which of these words is the odd one out?	Which of these words is the odd one out?	Which of these words is the odd one out?	
Can you say a sentence which links this word without these two words?	Can you say a sentence which links these two words?	Can you say a sentence which links these two words?	Can you say a sentence which links these two words?

